Approaches with Recycle, Treatment, and Disposal of Flowback and Produced Water and the ABCs of Managing NORM in the Marcellus Shale Region

Mark Gannon, PE, PMP
Alex Lopez, CHP
AMEC Environment & Infrastructure
Safety Moment – Working at a Wastewater Treatment Locations

- When handling treatment chemicals, wear proper PPE protection – safety eye glasses, gloves

- Always be aware where the safety eyewash water bottles and or shower are located

- Wear a face mask when handling chemicals that generate dust
Current Recycle Treatment Challenges

- Current Operator recycle/reuse approaches varies
- Flowback and produced water chemistry varies
- Frac water chemistry requirement varies
- Cost of treatment – AFE and LOE budgets
- Cost of water transfer
- Drilling and completion logistics
- Regulatory considerations
Water inputs and outputs change throughout life cycle of each gas well
- Mud drilling water
- Top hole water
- Flowback water
- Produced water
- Storm water

Operators in Marcellus and Utica are using varied recycle treatment approaches.
Flowback and Produced Water Handling

- Blend untreated flowback and produced water with fresh water
- Treat flowback and produced water to make a clean brine and blend with fresh water
- Add friction reducers, anti-scalant and biocides for hydraulic fracture water makeup
- Transfer flowback and produced water to permitted central treatment facilities for recycle and reuse
- Transfer flowback and produced water to permitted brine disposal wells
Recycle Flowback and Produced Water – Many Treatment Approaches

- Flowback water – water that returns to surface via wellbore after the fracturing treatment is complete

- Produced water – water produced along with oil and gas

<table>
<thead>
<tr>
<th>Parameter (mg/L or ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids (TSS)</td>
</tr>
<tr>
<td>Bacteria - SRB and APB</td>
</tr>
<tr>
<td>Iron (Fe²⁺)</td>
</tr>
<tr>
<td>Barium</td>
</tr>
<tr>
<td>Strontium</td>
</tr>
<tr>
<td>Calcium</td>
</tr>
<tr>
<td>Total Dissolved Solids (TDS)</td>
</tr>
<tr>
<td>Sulfates</td>
</tr>
<tr>
<td>Chlorides</td>
</tr>
</tbody>
</table>
Key Hydraulic Fracture Water Fluid Properties

- Low viscosity
- Non-reactive
- Non-flammatory
- Minimal residuals
- Minimal potential for scale & corrosion
- Low entrained solids
- Around Neutral pH (6.5 to 7.5)
Water Impurities of Concern

- Scale Forming Constituents
- High Dissolved Solids (Chlorides, Sulfates & Calcium)
- Bacteria: Acid Producing (APB) and Sulfate Reducing Bacteria (SRB)
- Suspended Solids
- Hydrocarbons
- Acid Gases (CO₂ & H₂S)
- Friction Reducers
- Warmer season odor
Recycle Treatment Options

<table>
<thead>
<tr>
<th>Technology</th>
<th>Bag Filtration</th>
<th>Physical/Chemical Separation</th>
<th>Electro-Coagulation</th>
<th>Chlorine Dioxide Treatment</th>
<th>Evaporation/Distillation (MVR)</th>
<th>Crystallization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids (TSS)</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>× With pretreatment</td>
<td>×</td>
</tr>
<tr>
<td>Metals</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
<td>× With pretreatment</td>
<td>×</td>
</tr>
<tr>
<td>Bacteria</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td>× With pretreatment</td>
<td>×</td>
</tr>
<tr>
<td>Barium</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
<td>× With pretreatment</td>
<td>×</td>
</tr>
<tr>
<td>Hardness (Ca)</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td>× With pretreatment</td>
<td>×</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td>× With pretreatment</td>
<td>×</td>
</tr>
</tbody>
</table>

Limitations
- Disposing of spent filter bags. Can be costly.
- Can have large chemical usage and solids processing / landfilling.
- Requires very consistent/stable raw water quality. Can have high ($) electrical requirements.
- Danger handling and generating chlorine dioxide. Can be costly. Have to pay close attention to system performance.
Recycle Treatment Approaches

- No Treatment
- Bag Filtration
- Biocide Treatment
- Physical/Chemical
- Electrocoagulation
- Evaporation
Sludge Handling and Disposal

- Metal hydroxide sludge – non hazardous can be disposed at permitted landfills

- Depending on the water treatment process, sludge can contain elevated levels of naturally-occurring radioactive material (NORM) that may require management and additional disposal methods.

Good Management Of NORM/TENORM Must Begin With A Good Understanding Of Radioactivity
Radiation

- **Energy** released from unstable atoms
- Radiation can have the form of
 - rays (electromagnetic waves) or
 - high-speed particles
Radioactive Decay

- The process in which a radioactive atom releases some excess energy (in the form of radiation)

Large, unstable nucleus

Alpha

Beta

Gamma

Neutron

Ionizing Radiation
Radioactivity

- The rate of the radioactive decay process.
- Measured in units of decays (nuclear disintegrations) per unit time.
 - dpm (disintegrations per minute)
 - dps (disintegrations per second; 1 dps = 60 dpm)
 - Curies (3.7 x 10^{10} dps)
 - 1 Curie = 1 g Ra-226
 - Becquerel (1 dps)
- Environmental applications commonly measure radioactivity in units of pico-Curies (pCi)
 - 1 pCi = 2.22 dpm
Isotopes are atoms of the same element (the same number of protons) but a different number of neutrons.

Isotopes have the same chemical properties; however, the nuclear properties can be quite different.
Radiation Dose:

- **Rem (US Unit)**
 - **Roentgen Equivalent Man**
 - Unit for measuring dose equivalence
 - Takes into account the energy absorbed (dose) and the biological effect on the body due to the different types of radiation
 - 1 Rem = 1,000 mrem
 - The U.S. average annual dose from exposure to the natural background and man-made sources is approximately 620 millirem per year
Effects of exposure

- Effects that may appear in the exposed person:
 - Cells may become cancerous
 - Cell death
 - Cataract formation
 - Increased susceptibility to disease

- Note: In human populations, *genetic* (hereditary) effects have not been observed to appear in future generations
Radioactivity: Natural

- Oil and gas deposits exist in geologic formations that contain naturally-occurring radioactive materials (NORM)
 - Uranium (U-238)
 - Parent + 13 radioactive progeny
 - Alpha, beta, gamma radiation
 - Thorium (Th-232)
 - Parent + 10 radioactive progeny
 - Alpha, beta, gamma radiation
- Secular Equilibrium in the rock
Radioactivity: NORM
Radioactivity: TENORM

- Technologically-enhanced NORM (TENORM)
- Scale
 - Group IIA elements (barium, strontium, calcium, radium) form pipe / tank scales
 - Acidity, temperature, and pressure contribute to scale build-up
 - Gas transportation (radon)
- Sludge
 - Produced water
 - Water treatment- barium extraction inadvertently concentrates radium in filter cake sludge
 - Filter socks
Radioactivity: NORM and TENORM
The U.S. Nuclear Regulatory Commission (NRC) does not regulate or license NORM and TENORM

- Authority falls to the 50 individual states and miscellaneous federal agencies
- U.S. Department of Transportation regulates the packaging, labelling, and transportation of NORM- or TENORM- containing materials
- U.S. Environmental Protection Agency (EPA) regulates radioactivity in drinking water
- U.S. Occupational Safety and Health Administration (OSHA) regulates employee exposure to radioactive material
- States that have entered into an agreement with the NRC allow states to have their own radiation protection regulations
 - 37 Agreement States
Pennsylvania

- Agreement state
- Except for transportation, NORM is under regulatory control of the PA Dept. Of Environmental Protection
- Disposal options in PA do exist for some low-level NORM-containing wastes
 - Based on landfill specifics, require dose modeling and PA DEP approval
 - Volumetric annual limit and concentration limit
- NORM Study
Ohio

- Agreement state
- Regulated by ODH, ODNR, OEPA
- Chapter 3701 contains TENORM and radioactive materials handling standards
 - 20 pCi/g of Ra-226 requires license
 - 25 uR/hr for recyclable materials
- Exemption for possession, storage, use, transportation, and distribution of compressed gases containing NORM
- Waste Disposal- Injection Wells, Alternate Means Approved by Director
Develop NORM Management Program

• Managing Worker / Environmental Liabilities and Cost

• Industry Benchmarks
Implement NORM Management Program

- Detection of NORM
- Establish Action Limits
- Contamination Control Procedures
- Control of NORM-contaminated waste
 - Disposal Options
 - Minimize Waste Volumes and Costs
- Control of NORM-contaminated equipment
- Contingency SOPs
Worker Protection

- Worker Training and Awareness
- Hazard Identification Program
- Radiological controls
 - SOPs
 - Postings
 - Equipment
- Appropriate PPE
 - Dosimetry
Hydraulic fracturing for oil and gas is bringing radiological issues into the spotlight

NORM is brought to the surface in solids, liquids, and gases

- Vertical and horizontal drill cuttings contain U-238 and Th-232 decay series
- Flowback (produced) water contain radium and their decay progeny
 - May ultimately concentrate during waste water treatment
- Natural gas contains radon and its decay progeny
 - May ultimately deposit during decay in gas equipment and transportation

Implement NORM/TENORM Management Programs

- Basic radiation safety practices
- Reduce occupational and public exposures
- Reduce environmental liability
- Reduce costs
Questions?

Alex Lopez, CHP
Alejandro.lopez@amec.com
412-279-6661

Mark Gannon, PE, PMP
Mark.gannon@amec.com
412-279-6661

AMEC Environment & Infrastructure